skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prodan, Camelia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Topological metals are conducting materials with gapless band structures and nontrivial edge-localized resonances. Their discovery has proven elusive because traditional topological classification methods require band gaps to define topological robustness. Inspired by recent theoretical developments that leverage techniques from the field ofC-algebras to identify topological metals, here, we directly observe topological phenomena in gapless acoustic crystals and realize a general experimental technique to demonstrate their topology. Specifically, we not only observe robust boundary-localized states in a topological acoustic metal, but also re-interpret a composite operator—mathematically derived from theK-theory of the problem—as a new Hamiltonian whose physical implementation allows us to directly observe a topological spectral flow and measure the topological invariants. Our observations and experimental protocols may offer insights for discovering topological behaviour across a wide array of artificial and natural materials that lack bulk band gaps. 
    more » « less
  2. Abstract The emergence of a fractal energy spectrum is the quintessence of the interplay between two periodic parameters with incommensurate length scales. crystals can emulate such interplay and also exhibit a topological bulk-boundary correspondence, enabled by their nontrivial topology in virtual dimensions. Here we propose, fabricate and experimentally test a reconfigurable one-dimensional (1D) acoustic array, in which the resonant frequencies of each element can be independently fine-tuned by a piston. We map experimentally the full Hofstadter butterfly spectrum by measuring the acoustic density of states distributed over frequency while varying the long-range order of the array. Furthermore, by adiabatically changing the phason of the array, we map topologically protected fractal boundary states, which are shown to be pumped from one edge to the other. This reconfigurable crystal serves as a model for future extensions to electronics, photonics and mechanics, as well as to quasi-crystalline systems in higher dimensions. 
    more » « less